If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-180x+900=0
a = 8; b = -180; c = +900;
Δ = b2-4ac
Δ = -1802-4·8·900
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-180)-60}{2*8}=\frac{120}{16} =7+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-180)+60}{2*8}=\frac{240}{16} =15 $
| 13x=-20 | | 5a-14=18 | | 384=3x*2x/2 | | -7x²+2=-12 | | (1600+18x)(x-15)=(1200+22x)(x-20) | | (2x-3)x(x-1)=0 | | (x-1)(2x+5)=(x-1)(5x+4) | | 2•(1-x)=1/3•(11-6x) | | 2(3-5x)=4(1-x) | | x+16=12x | | z–5=15 | | x+16=12× | | x^2-10x=-78 | | 6(5x-1)=2x-13 | | x^2-10x+78=0 | | 5x+3−3x=11 | | x+(x/28)/90=180 | | 3q=6-3q | | 2(x+3)=10= | | x+1-1=5-1 | | 3(2t+5)=5t+20 | | 20s+6=110 | | Y=0.10x+x | | 2/9=n/36n= | | 2,5x+3(0,5-1,8)=3,8 | | 4x−11=2(x−3x)+13 | | 3(4x-8)=3x-6 | | -12x-5=-8x+16 | | 4–x/3=1 | | n/24=11/8 | | 2/9=n/36 | | -(2x+7)-9=1+(2x-1) |